
Scripted Signal Functions
David A. Stuart

alex@das.li

Abstract
Programming time-dependent signals like animations in-
volves expressing both continuous and discrete changes in
signal values. The method of functional reactive program-
ming (FRP) represents this simply and effectively as dis-
crete modes of an otherwise continuous signal. In variants of
FRP based on arrows, programs are composed not of signals
but rather functions on signals. Accordingly, these signal
functions can switch between discrete modes of operation.
However, the literature emphasizes expressions of mode
switching that are unnecessarily limited. An analysis of their
limitations indicates the need for two new, primitive trans-
formations of signal functions. These transformations help
to define a monad that represents signal function modes, and
this allows programmers to express switching in an impera-
tive, script-like style. This scripting interface gains flexibility
and power from several novel operations, including a general-
purpose mapping between modes and a combination that
mixes two concurrent modes into one. We demonstrate its
usefulness with several examples.

CCS Concepts: • Software and its engineering→ Con-
trol structures; Functional languages; Concurrent pro-
gramming structures; Scripting languages.

Keywords: functional reactive programming, Haskell

ACM Reference Format:
David A. Stuart. 2020. Scripted Signal Functions. In Proceedings of
the 13th ACM SIGPLAN International Haskell Symposium (Haskell
’20), August 27, 2020, Virtual Event, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3406088.3409016

1 Introduction
Several languages for functional reactive programming (FRP)
are embedded in Haskell as arrow combinators that repre-
sent signal functions [1, 17, 21]. These are relations on time-
dependent quantities, and a relation itself can vary over time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8050-8/20/08. . . $15.00
https://doi.org/10.1145/3406088.3409016

They elegantly model the behavior of hybrid dynamical sys-
tems ranging from robots to interactive animations [5, 11, 20].
Languages based on signal functions use Haskell to directly
and consistently discretize a model’s complex behavior into
simple state transitions over short time steps.
Users of these languages compose signal functions to

represent common signal-processing relationships. Each of
these compositions yields another signal function, making it
convenient to construct complex relationships out of simpler
ones. They include mode switching, where the composite
behaves first as one signal function and then switches to be-
have as another. This in particular allows a modeler unique
flexibility when inventing system models, because several
models of nearly arbitrary diversity can comprise the history
of one signal function. It is not necessary to devise a single,
continuous model that covers every moment [16].
However, the common ways to express mode switching

are limited. Yampa for instance provides a combinator for
simple expressions that makes more involved expressions
hard to change or even impossible to write. It also provides a
way to manage a set of concurrent signal functions, but this
depends on one set of parameters that constrain the whole
course of every signal function in the set. These issues limit
the flexiblity that mode switching can offer.

As it turns out, there areways for amodeler to quite simply
express sophisticated mode switching in a signal function as
just a schedule of activities for the signal function to engage
in, much like a stage actor’s script. This can be a very abstract
expression in which each line of the script denotes a long
interval of complex behavior punctuated by a dramatic state
transition. Yet because we give the expression meaning in
terms of signal functions, it is still directly and consistently
defined as short intervals of primitive behaviors.
Prior research on Haskell programs for robot control de-

veloped this concept to some extent for the purpose of robot
task planning [13, 20]. This paper goes further by showing
how signal functions can implement plans of new flexibility
and power for any component of a behavior while main-
taining their simple semantics of continuous time. Its main
technical contributions are

• a novel monadic representation of discrete modes in
signal functions (section 3.2),
• a general way of transforming one mode into another
(section 3.6),
• an operator that combines two modes into one multi-
threaded mode (section 4.3), and
• two new primitive operators on signal functions that
enable all of this (sections 3.1 and 4.2).

https://doi.org/10.1145/3406088.3409016
https://doi.org/10.1145/3406088.3409016

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

It also presents examples of how to use signal function scripts
effectively. In particular, it shows how they can serve as a
simple, unified language for expressing animation, character
behaviors, scene changes, and other features of interactive
graphics applications such as games.

2 Background
2.1 Continuous Behaviors
It is common to model the behavior of a system as a quantity
that varies over time: a signal. We can think of a signal as
a function f : R→ V from the continuum of time to some
set of possible quantities. Thus at any time t ∈ R a signal
has a particular value f (t) ∈ V , and this value can change
continuously as time passes continuously. This simple idea
underpins our intuition about our physical environments.
FRP aims to help programmers recruit that intuition to

directly express system models as processes in a computer
without introducing undue complexity and error [8]. Users
of the arrow languages for FRP express functions on signals,
which take one signal as input and transform it to produce
another signal as output. We can think of a signal function
as a function on functions F : S1 → S2, where S1 = { f | f :
R→ V1} is a set of input signals and S2 = {д | д : R→ V2}
is a set of output signals. To evaluate the output signal at a
given time, we evaluate the history of the input signal up to
that time and compute its transformation under F .
In Yampa, a signal may carry values of an arbitrary type.

A signal function has the type SF a b, where its input signal
carries values of type a and its output signal carries values of
type b. The type SF is an arrow: an instance of theArrow type
class [14]. The primitive arrow combinators in this instance
amount to primitive ways of routing signals between signal
functions, and arrow notation amounts to a block diagram for
a network of signal chains [19]. Importantly, SF is an instance
of ArrowLoop; the loop combinator (and hence rec in arrow
notation) defines feedback loops in signal chains. Signal
functions are closed under these combinations, allowing us
to make new signal functions by composing existing ones.

2.2 Discrete Behaviors
Of course, not every quantity in every system changes contin-
uously all the time. Hybrid dynamical systems, such as mod-
els of urban traffic or switched electrical circuits, express re-
lations between both continuous and discrete changes [7, 12].
Reactive computer systems like graphical user interfaces and
industrial process controllers receive both continuous sig-
nals and reports of discrete events as input [2]. To model
discrete behaviors, signal functions transform event streams.
These are signals whose values have an option type, such as

data Event a = NoEvent | Event a

where, at any time, the signal value Event a denotes an event
occurrence and the value NoEvent denotes non-occurrence.

Signal functions can treat event streams just as they treat any
other signal. But event streams can also drive mode switch-
ing: discontinuous changes in how signal functions map
their input to their output. These changes can be arbitrarily
dramatic; only the input and output types must remain the
same throughout. We can express a broad range of systems
as signal functions that switch between different modes at
the moments of certain events.

2.3 Expressions of Mode Switching
Yampa represents mode switching with the combinator

switch :: SF a (b, Event c) → (c → SF a b) → SF a b

that combines a signal function with a continuation to pro-
duce a new signal function. The first signal function must
have a second output channel that signifies the termination
of the first mode and gives the argument to the continuation.
Applying the continuation results in a second signal function,
and altogether the combination denotes one signal function
with two modes: one active before it detects a termination
event, and the other active thereafter.

To combine more than two modes we must combine them
recursively: we combine the last two modes, and then we
combine the result with the third-to-last mode, and so on:

mn−3 ‘switch‘ (λc3 → · · ·
mn−2 ‘switch‘ (λc2 → · · ·
mn−1 ‘switch‘ (λc1 → · · ·

mn)))

Each of these modes except the last one must be represented
by a signal function with an auxiliary event-stream channel.

Combining modes with switch is analogous to combining
monadic actions with the bind operator (>>=). In each, the
first parameter produces a value, and the second parame-
ter uses that value to generate a new producer like the first
parameter. A monadic interface to mode switching would
provide many conveniences. The most immediate of these
would be the freedom to write modes not as a single, nested
continuation, but rather as a sequence of activities, each ex-
pressively and meaningfully separate from the continuation:

runMode (do c3 ←mn−3
c2 ← · · ·mn−2
· · ·mn−1)

(λc1 → · · ·mn)

Inserting an extra mode between two others would be more
straightforward with such an interface. We could define
new modes as finite sequences of other modes, rather than
continuations of them. We could define an infinite, looped
sequence by recursively punctuating a mode with itself.
Normally this is not possible because switch lacks the

associative property of (>>=), where it is always true that

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

(m1 >>= λa1 → · · ·m2) >>= λa2 → · · ·m3
=m1 >>= (λa1 → · · ·m2 >>= λa2 → · · ·m3)

The analogous associations of terms combined with switch
imply two different types for the same signal function. On
one hand,

((m1 ‘switch‘ λc1 →m2)

‘switch‘ λc2 →m3) :: SF a b
∴ (m1 ‘switch‘ λc1 →m2) :: SF a (b, Event c)
∴m1 :: SF (a, ((b, Event c),

Event d))

but on the other hand,

(m1 ‘switch‘ (λc1 →
m2 ‘switch‘ λc2 →m3) :: SF a b

∴m1 :: SF a (b, Event c)

There is no finite type b that matches (b, Event c).
So, functional reactive programming with arrows is, over-

all, an elegant way to model systems with both continuous
and discrete behaviors. However, its expressions of mode
switching can be cumbersome, and their similarity to monad
expressions suggests how they can be more flexible.

3 Sequential Modes
A monad to represent modes clearly requires a different way
of concatenating them than switch. To determinewhat that is,
we must observe the asymmetry between the type of switch’s
first operand and the type of its result. The output type of
the former includes a switching event, and the output type of
the latter does not. This, by design, controls the complexity
of signal functions under the mode-switching combination.
The presence of modes in a signal function is immaterial to
further combinations involving that signal function.

3.1 Linking Signal Functions Associatively
By relaxing this design goal we can define a mode-switching
combinator link that retains the denotation of a mode and is
thereby associative. It could have the type

SF a (b, Event c) → (c → SF a (b, Event d))
→ SF a (b, Event d)

and its implementation would be nearly identical to that of
switch. The only difference is that the result puts out values
that include a second component, just as the first operand
does. The value of that component denotes the absence of a
termination event throughout the first mode and up to the
end of the second mode. In this way, modes represented by
the type SF a (b, Event c) would be closed under link.
Furthermore, we can do the same for modes represented

by the type SF a (Either b c). Neither link nor switch ever
computes these b and c values at the same time, so a sum
type can stand in for both. As we will see, this is a more
convenient representation.

Despite its similarity to switch, there is no way to define
link in Yampa. We must instead add it as a new primitive,
defining it in terms of an underlying implementation: the em-
bedding of signal functions in Haskell. Perez and colleagues
expressed a particularly simple and extensible implementa-
tion using monadic stream functions, or MSFs [21], so we
will base our definition on that. They define MSFs as

data MSF m a b = MSF {unMSF :: a→ m (b,MSF m a b)}

where the function unMSF maps an input sample to both an
output sample and another MSF, in some monad. The new
MSF will process the next input sample, and thus it defines
how the result of link continues given its output value.

link :: SF a (Either b c) → (c → SF a (Either b c))
→ SF a (Either b d)

link sf k = MSF (λa→ do
(bc, sf ′) ← unMSF sf a
case bc of
Right c → unMSF (k c) a
Left b → return (Left b, link sf ′ k))

This samples the output of the first signal function. If its sec-
ond component matches Right c, the second signal function
takes over. Otherwise the sample stands. See Appendix A
for a proof of associativity.

3.2 Representing Modes
Normally it is simple to represent modes with signal func-
tions of type SF a (b, Event c). However, some modes are
what we may term recessive modes. They have no duration,
and their hypothetical output is always superceded by the
remainder of the signal function. Ultimately these modes just
record, instantaneously in simulated time, a parameter for
other modes. To represent this accurately, our representative
signal functions instead have output of type Either b c:

newtype Mode a b c = Mode (SF a (Either b c))

At the moment of switching, the output value will have the
Right constructor. At all other times the output value will
have the Left constructor.
The type Mode a b is a monad in the type c of the termi-

nation parameter:

instance Monad (Mode a b) where
return c = Mode (constant (Right c))
Mode sf >>= f = Mode (link sf g)

where g c = let Mode sf ′ = f c in sf ′

The expression m >>= k denotes a mode that itself has two
modes. (>>=) is identical to link aside from wrapping and
unwrapping the Mode constructor. The expression return c
denotes a recessive mode that records the value c.

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

3.3 Signal Functions from Modes
One operation on values of type Mode a b c is indispensible,
namely producing well defined, mode-switching signal func-
tions from them. A natural candidate for this operation is
just switch, though we must translate the output type of our
representative signal function to be compatible with it.

runMode ::Mode a b c → (c → SF a b) → SF a b
runMode (Mode sf) k = switch (sf >>> arr toEvent) k
where toEvent x = case x of

Left b → (b,NoEvent)
Right c → (⊥, Event c)

As before, we produce a signal function by combining a mode
with a continuation that gives the final mode. In fact any
continuation that works with switch will work here as well.
Note that the term ⊥ in the Left b case of toEvent will never
be evaluated, because it is superceded by the output of the
final signal function. switch ignores the output of the first
signal function at the moment of switching.
Often a sequence of modes should not just run once but

instead recur indefinitely in a loop. We can define such a loop
recursively as we do for anymonad.We could apply runMode
to the loop, but it would never apply its final continuation.
For this case we define a special version of runMode that
does not require a final continuation as an argument:

loopMode ::Mode a b c → SF a b
loopMode m = runMode m (const (loopMode m))

This will of course diverge when applied to a recessive mode,
since it will never stop switching out of it and thence back
into it. This divergence is an extant pitfall of switching in
Yampa and its MSF-based descendent, Bear River [21]; we
do not propose to resolve it here.

3.4 Modes from Signal Functions
Conversely it is useful to define some basic modes as inter-
vals of arbitrary signal functions. While we can do so with
the Mode constructor, we may want to hide it, and anyway
the desired behavior in a mode may not be readily available
as a value of type SF a (Either b c).
We produce the most basic of these modes with always.

Its application to a signal function denotes a mode that never
terminates, always behaving as that signal function does:

always :: SF a b→ Mode a b c
always sf = Mode (sf >>> arr Left)

Note that (>>>) is the composition combinator for arrows
and arr is the function that lifts a generic function to an
arrow command. Here the combination sf1 >>> sf2 denotes a
signal function that feeds the output signal of sf1 to the input
of sf2 , and the expression arr f denotes a signal function
whose output signal is just the pointwise application of f to
its input signal.

A variation of that is over , which takes as arguments a
length of time and a signal function and gives a mode that
terminates after the length of time has passed. During that
length of time it behaves as the signal function does:

over :: DTime→ SF a b→ Mode a b ()
over interval sf = Mode (sf &&& time >>> arr check)

where check (b, t) | t < interval = Left b
| otherwise = Right ()

Note that (&&&) is the fan-out combinator for arrows. Here
the combination sf1 &&& sf2 denotes a signal function with
two output channels, transforming an input signal with both
sf1 and sf2 simultaneously and pairing their output signals.
We can define an interval of activity for a signal func-

tion more generally than as a predetermined length of time.
We can combine an arbitrary signal function with an event
source, producing a mode that runs until the first event.

before :: SF a (Event c) → SF a b→ Mode a b c
before interrupt sf = Mode (sf &&& interrupt >>> arr check)

where check (, Event c) = Right c
check (b,NoEvent) = Left b

3.5 Other Primitive Modes
Some useful, basic modes are not based on a signal function
parameter. The most useful of these modes is sample, a re-
cessive mode that binds the current value of the input signal
for use in defining the next mode.

sample ::Mode a b a
sample = Mode (arr (λa→ Right a))

This allows a script to directly express, among other things,
a branching decision based on the input signal. For example,
given terms fight and flight that model long-interval activi-
ties of an animal, and some function danger of the animal’s
senses, we can concisely script a crude stress response:

response ::Mode Senses Actions c
response = do senses← sample

if danger senses < dmax then fight
else flight

Often it is necessary to put out a signal value for as short
an interval of time as possible, especially if the value denotes
a current event. By applying moment to a function f which
produces that value we obtain a very short-lived mode with
constant output equal to that value.

moment :: (a→ b) → Mode a b ()
moment f = Mode (proc a→ do

done← iPre False −≺ True
returnA −≺ if done then Right ()

else Left (f a))

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

The expression iPre False denotes a signal function that trans-
lates a Boolean signal forward in time by one step, delaying
the end of the mode by the smallest possible interval.

3.6 Transforming Modes
Thus far we have developed the means to construct a variety
of composite modes. But we still lack a way to make slight
modifications to an existing mode, other than modifying its
existing expression. We can instead define a function that
maps one mode to another based on a transformation of its
signal relation, its termination condition, or both.

Any transformation that we apply to a whole signal func-
tion wemay reasonably apply to only onemode of that signal
function. For instance, we may want to amplify a signal func-
tion’s output during one mode only. Or we may want to
filter the input in one mode so that we can compose it with
modes of a different input type. Wemay also wish to alter the
duration of a mode but retain the same relation on signals.
For example, we may want an otherwise lengthy mode to
last no longer than one second.
Given our representation of modes, we can represent all

of these transformations as functions of type

SF a (Either b c) → SF d (Either e f)

and apply them trivially with the function

mapMode :: (SF a (Either b c) → SF d (Either e f))
→ Mode a b c
→ Mode d e f

mapMode f (Mode sf) = Mode (f sf)

One suchmapping terminates a mode early based on an ex-
tra event source. Whenever the mode’s representative signal
function indicates a normal output with the Left constructor,
we can also run the event source to conditionally construct
a terminating output with Right. The ArrowChoice instance
for signal functions allows a case analysis of the output to
determine whether the event source runs. Hence the event
source can observe both the input and output signals.

onlyUntil :: SF (a, b) (Event c) → Mode a b c → Mode a b c
onlyUntil source = mapMode clip
where clip sf = proc a→ do

ebc ← sf −≺ a
case ebc of

Left b→ do
stop← source −≺ (a, b)
returnA −≺ case stop of

Event c → Right c
NoEvent → Left b

Right c → do
returnA −≺ Right c

Applied to an event source, onlyUntil gives us a simple way
to add behavior to a script under certain conditions. Given an

existing script that runs unconditionally, we can summarily
clip it to an interval preceding a certain event and insert it
between two other modes in a larger script.
By the same mechanism, we can transform a mode to

attach a sample of its output signal to its termination param-
eter. This can be particularly useful for handing off the value
of a shared state variable between modes:

lastOut :: b→ Mode a b c → Mode a b (c, b)
lastOut b0 = mapMode (record b0)
where record b0 sf = proc a→ do

rec bR ← iPre b0 −≺ b
ebc ← sf −≺ a
b ← case ebc of

Left b1 → returnA −≺ b1
Right c → returnA −≺ bR

returnA −≺ fmap (, b) ebc

At this point our interface to sequential mode switching
is fairly robust. It lets us create modes from signal functions,
create signal functions from modes, and create modes by
combining and transforming other modes.

4 Concurrent Modes
Representing modes with a monad allows us to do more than
express mode switching in a single signal function. In fact,
we can go further and use modes to express concurrent mode
switching among multiple signal functions.

4.1 Parallel Switching in Yampa
For this same purpose Yampa provides the function

pSwitch :: Functor col ⇒
(forall sf .a→ col sf → col (b, sf))
→ col (SF b c)
→ SF (a, col c) (Event d)
→ (col (SF b c) → d → SF a (col c))
→ SF a (col c)

that produces one signal function with the combined out-
put of multiple signal functions in an evolving collection. It
takes four values as arguments, respectively defining a rout-
ing function to distribute input to the collection, the initial
collection before any changes have occurred, an event source
to detect when the changes should occur, and a continuation
to effect the changes themselves.

Individually these concepts are reasonably easy to under-
stand, and together can represent a very general kind of con-
current mode switching. However, the complexity of pSwitch
is a departure from the simple and isolated operations on
signal functions that constitute the rest of the language. Us-
ing it at all immediately requires us to write expressions
whose types are unique. For that reason we must usually
work them out from scratch rather than building them from
existing definitions, and we usually cannot reuse them in

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

other definitions. Moreover they must be valid throughout
the entire course of the signal function. We cannot construct
them from simpler definitions that are valid only during cer-
tain modes. Since that capability is one of the virtues of mode
switching itself, we should consider a different interface.

4.2 Access to Remainders of Signal Functions
Before we can do that we must make more generally avail-
able one of the central provisions of pSwitch: access to the
remainders, at the moment of switching, of the signal func-
tions that it manages. These are their relations on signals
as they have evolved up to that moment, also called their
“continuations” [21]. We will refer to them as “remainders”
to avoid confusion with the functions that produce them,
which are called “continuations” as well. pSwitch passes these
remainders in a collection of type col (SF b c) to its continua-
tion, which transforms the collection based on the switching
event parameter and then encapsulates it once again as a
single signal function. From the continuation’s type

Functor col ⇒ col (SF b c) → d → SF a (col c)

we can infer that the collection of remainders cannot escape
the signal function as such (see Appendix B.2).
This is an appropriate constraint on a switching func-

tion, because just as switch controls complexity by hiding
the presence of modes in a signal function, pSwitch controls
complexity by hiding the presence of concurrent processes.
No further combinations involving the result of pSwitch de-
pend on how it develops its collection of remainders.

At the same time, there is no reason to make the continu-
ation of pSwitch the exclusive custodian of signal function
remainders. We can provide a way to produce as an output
signal the remainder, at any moment, of an arbitrary signal
function. This can be an operator

vain :: SF a b→ SF a (b, SF a b)

that transforms a signal function into one with an auxiliary
output channel denoting its current remainder.
While it may seem unusual for a continuous signal to

have type SF a b, it poses no semantic problems. All signal
functions are defined not on the entirety of time (−∞,∞) but
on the interval of time [t0,∞) greater than or equal to some
particular moment t0. We can always define a signal function
for which t0 is the present, so we can define a signal denoting
the evolution of that signal function as the present changes.
Specifically, let us consider a signal function to be a second-
order function F : SA → SB , where SA = { f | f : R+ → A}
and SB = {д | д : R+ → B}. Let us say that

F (a) = t 7→ b(t ,a(t))

for some function b : R+ × A → B of both time t and the
value of a(t). Then the signal function’s remainder after a
quantity τ ∈ R+ of time has passed is

G(a) = t 7→ b(t + τ ,a(t + τ)).

Abstracted over τ , this is a function h : R+ → G, where G
is the set of functions {G | G : SA → SB }. It is a function of
time, just like any signal.
This operator, like link, is impossible to implement in

Yampa, and we must add it as a new primitive. Doing so is
straightforward if the language, like Yampa, already imple-
ments signal functions in terms of their remainders. Bear
River implements signal functions withmonadic stream func-
tions, which make this particularly easy. In fact, we can im-
plement vain not just as a function on signal functions but
as a function on MSFs in general:

vain ::Monad m⇒
MSF m a b→ MSF m a (b,MSF m a b)

vain msf0 = MSF {unMSF = f }
where f a = do (b,msf1) ← unMSF msf0 a

return ((b,msf1), vain msf1)

Here the function that underlies vain msf0 applies the func-
tion underlying msf0 to an input sample a, producing an
output sample b and a remainder msf1. It pairs these as its
own output sample, and it applies vain to the remainder to
produce its own remainder.

4.3 Combining Modes in Parallel
The importance of this for mode switching is that we can
sample the remainder signal upon a switching event and use
the sample to define the next mode—or indeed the next set of
modes. We can define a combinator mix that combines two
modes of the same type into one mode with multiplex output,
terminating once both components have terminated. That
specification assumes that we can perform some operation
that combines two output signals. It also assumes that such a
combination is well defined even after one component stops
producing output—that we can substitute an identity value
for a missing output in the combining operation. Both of
these assumptions are captured at once by assuming that the
output type is a monoid. Thus a good type for mix is

mix ::Monoid b⇒
Mode a b c → Mode a b d → Mode a b (c, d)

Many types that represent multiple values, such as lists and
tables, have natural monoid instances. Our specification also
assumes that we can end one mode but keep the remainder
of the other mode: this is what vain allows us to do.

The composite mode itself has two possible modes: a pri-
mary mode when both component modes are running, and
a secondary mode when one component outlasts the other:

mix (Mode sf1) (Mode sf2)
= do result ← Mode both

case result of
Win1 (c, r) → Mode r >>= λd → return (c, d)
Win2 (d, r) → Mode r >>= λc → return (c, d)
Tie (c, d) → return (c, d)

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

Here we represent the relative timing of the two modes with
a sum typewhose constructors indicate, respectively, the first
mode terminating first (Win1), the second mode terminating
first (Win2), or both terminating simultaneously (Tie).
The signal function representing the primary composite

mode applies vain to each of the signal functions represent-
ing its components:

both = proc a→ do
(bc1, r1) ← vain sf1 −≺ a
(bc2, r2) ← vain sf2 −≺ a
returnA −≺watch (bc1, r1) (bc2, r2)

On the first terminating Right value we attach the other
remainder (r2 or r1) to its parameter and use it to report the
primary composite mode’s termination as well.

watch (Left b1,) (Left b2,) = Left (b1 ♦ b2)
watch (Right c,) (Left , r2) = Right (Win1 (c, r2))
watch (Left , r1) (Right d,) = Right (Win2 (d, r1))
watch (Right c,) (Right d,) = Right (Tie (c, d))

Note that (♦) is the monoid operator for the output type b.
Afterward the attached remainder represents the secondary
composite mode, and we say that its output is combined
with the monoid identity. If both values bc1 and bc2 indicate
termination we do not attach either remainder and instead
report the simultaneity.

As its type and effect of parallelism indicate,mix is closely
related to applicative functors. In fact, we could define an
instance of the Applicative type class for modes such that

mix = liftA2 (,)

It can be shown that this would satisfy the applicative functor
laws. However, there are several wrinkles in this relationship.
First, the parallel effect of the application operator (⊛)would
be different than the sequential effect of (>>=), meaning that

m1 ⊛m2 , m1 >>= (λf → m2 >>= (λx → return (f x)))

Also, since Applicative is a superclass of Monad, the monoid
constraint on the output signal of concurrent modes would
unnecessarily constrain those modes that we only compose
sequentially. To avoid these issues, we could wrap our type
Mode a b c in a new type and define the Applicative instance
for the wrapper type instead. Even then, there is a case for
different kinds of signal routing between concurrent modes
and hence different wrappers. Because of these complexities,
we will consider mix independently of applicative functors.

4.4 Multithreaded Scripts
Mix allows us to plainly express the concurrency of activities
that otherwise requires pSwitch. While we can apply mix
directly, it also allows us to extend the scripting interface
with expressions of concurrent threads. For instance, a script
can run parallel to others if we define a thread for it with

voice ::Monoid b⇒ Mode a b c →Threads a b c

Let us assume that some operation can combine multiple
thread values into one representing all of them. Then we can
determine its place in the rest of a sequential script by using

chorus ::Monoid b⇒Threads a b c → Mode a b c

to map a thread combination to a single mode that runs as
long as the longest thread runs.
We can represent threads in such a way that the syntax

of our thread expressions blends well with our syntax for
sequential modes. Ideally voice would express a new thread
branching off at a specific moment, parallel to the main script.
That is simple if we add continuation passing to ourMode a b
monad using the ContT monad transformer:

type Threads a b c = ContT c (Mode a b) ()

This way, when voice creates a new thread from amode, it has
access to the current continuation of the thread combination.
That could include not only more voice expressions but also
lifted mode sequences: we need only apply lift to any mode
to include it in the main thread.

Specifically, voice uses callCC to obtain the current contin-
uation. From that it produces a mode representing the main
thread, and it uses mix to combine it with the new mode:

voice m = callCC (λcc →
ContT (λk → mix m (runContT (cc ()) k)))

Given this representation, we can infer from the type of
chorus the definition

chorus t = runContT t return

This is a mode that runs the concurrent modes combined in
t and produces their combined result.
Compared to using pSwitch, this kind of multithreaded

scripting is more like our means of composing ordinary se-
quential modes. Expressions of routing and switching, if any,
are specific to certain modes of individual threads, whereas
pSwitch requires that they are the same for all of its threads
at all times. And as with sequential mode switching, there is
no need to define a continuation for every switching event.

5 Examples
Scripted signal functions, as we derive them in this paper,
first transpired during the production of a game using Yampa.
They repeatedly emerged as the most satisfactory solution
to a number of superficially disparate problems that other
productions solve with substantially disparate mechanisms.
While this is in large part thanks to Yampa itself, the value
of the scripting interface is evident in several examples.
One of these examples relies on the extended types of

signal functions that monadic stream functions can imple-
ment [21]. In Bear River the type of signal functions is
SF m a b, polymorphic in the monad parameter m of the
underlying MSF. Therefore, in these examples our mode type

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

has this parameter too: Mode m a b c. Previous definitions
do not rely on this polymorphism.

5.1 Animation Playback
Perhaps the most obvious of these examples is a signal func-
tion that plays back pre-rendered frames of an animation.
This has type SF m a Image, where Image is some representa-
tion of an image that can change. It could just be a command
of type IO () that writes image data to a framebuffer.

We can express a particular, four-framewalking animation
(fig. 1) directly as a script:

walk ::Monad m⇒ Mode m a Image
walk = do over 0.1 forward

over 0.1 stepRight
over 0.1 forward
over 0.1 stepLeft

Each mode could be just constant x for some image x, or it
could be sensitive to input such as a position on the screen.
We can generalize this to an arbitrary number of frames

and an externally controlled playback speed:

play ::Monad m⇒
[SF m a Image] → Mode m a Image ()

play frames = sequence (map (before timeUp) frames)
where timeUp = proc a→ do

t ← time −≺ ()
edge −≺ t < pace a

Here edge is a primitive signal function that puts out an
event when its input changes from False to True, and pace is
some function of the input signal value giving the current
duration of a frame. We can implement play with switch,
though it is more complicated:

play′ ::Monad m⇒ [SF m a Image] → SF m a Image
→ SF m a Image

play′ frames k = chain sfs
where sfs = map mode frames

mode frame = proc a→ do
image← frame −≺ a
t ← time −≺ ()
done ← edge −≺ t < pace a
returnA −≺ (image, done)

chain [] = k
chain (x : xs) = switch x (chain xs)

Critically, in the first case we can just as easily play the
animation once, or twice, or right before a different one, or
in a loop:

once = play x
twice = play x >> play x
different = play x >> play y
looping = forever (play x)

Figure 1. Four frames of a walking animation

Figure 2. A sequence of animations

In the second case these choices are determined by the con-
tinuation k. If we want our signal function to switch from
play′ x k into a different mode, we must come up with a
new event source and a new continuation.

5.2 Character Behaviors
The ease of constructing animation sequences is significant,
because a walking animation is usually only part of a char-
acter’s total animation (fig. 2). A character may play walk in
a loop for some number of seconds n, but then strike a pose
and start dancing:

disco ::Monad m⇒ Double→ Mode m a Image c
disco n = do onlyUntil (after n ()) (forever walk)

pose
forever dance

Some animations terminate early and thence lead to a differ-
ent animation sequence. For example, if something strikes a
character, the previous animation should stop immediately
and switch to a staggering animation.

mosh ::Monad m⇒ Mode m a Image c
mosh = do onlyUntil struck disco

stagger
headbang

This of course depends on struck receiving enough informa-
tion from the input signal to produce the early-termination
event stream.

We can furthermore associate other behaviors with these
animation modes. One of the most important is a changing
position within a frame as the walking animation plays—
otherwise the character walks in place, as if on a treadmill.
Let us assume that our frames in section 5.1 indeed receive
a position as input. Then a particularly convenient way to
work this out is by making position part of the output as

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

Figure 3. Concurrent dancers entering the dancefloor

well, feeding it back to the input, and hiding the whole loop
with a state-handling monad transformation. That way we
can just use mapMode to include, in the output of walk, an
extra state-recording action that updates the position:

trek ::Monad m⇒ Mode (StateT m) a Image c
trek = mapMode move (forever walk)
where move sf = (sf &&& time) >>> go

go = arrM (λ(b, t) →
put (speed ∗ t) >> return b)

Thus we can substitute trek for forever walk in the definition
of disco, and we can define a transformation of it that closes
the state loop:

dancer ::Monad m⇒ Double→ Mode m a Image c
dancer n = mapMode (runStateSF 0) (disco n)

Here runStateSF 0 is a function that maps a signal function
with monadic state handling to one with an initialized feed-
back loop. Only the walking animation will move across
the frame, and the other animations will remain stationary.
Because of the state handling, the other animations will nev-
ertheless be stationary at the last position that trek recorded.

Concurrent dancers are simple to express using voice and
chorus. Several characters can follow one script together:

club ::Monad m⇒ Mode m a Image c
club = chorus (do onlyUntil musicBegins

(always (constant mempty)) & lift
strobeLight & lift
voice (dancer 5)
onlyUntil musicCrescendo
(always (constant mempty)) & lift

strobeLight & lift
voice (dancer 3)
voice (dancer 7))

Note that (&) is the reverse application operator such that
x & f = f x. This script says that three characters begin
dancing in two stages. Nothing happens until club (the main
thread) senses that music begins. At that time a strobe light
begins flashing for some interval, and then the first dancer
dancer 5 (a new thread) begins. Then, in the second stage, the
light flashes again, and both of the remaining dancers begin
simultaneously. All three of the dancers end at arbitrary
times, and club ends when the last dancer ends (fig. 3).

As illustrated here, a script for one of many characters
can be the same as the script for a lone character. The only
additional work we may need to do is to express how its
input signal relates to that of club and, if its output type is
not a monoid, how it is mapped to one. mapMode does both.

5.3 Scene Changes
Such a scene as club may be the correct scene only until a
user enters a command to leave, at which point an outdoor
scene must entirely replace it. This changing of scenes is a
critical feature of many games, and some implement it with
weighty protocols or ad-hoc mechanisms for specific scenes.
For us this is just a reiteration of mode switching, at yet a
higher level:

story ::Monad m⇒ Mode m a Image c
story = onlyUntil leave club >> outdoors

That much is simplistic, but without much more effort we
can implement an automaton that loops in and out of four
different scenes. If we bundle a scene with an event source
that provides the next scene, we can define a programmable
scene-changing system:

data Scene m a
= Scene (SF m a Image,

SF m (a, Image) (Event (Scene m a)))

world ::Monad m⇒
Scene m a→ Mode m a Image (Scene m a)

world (Scene (here, next)) = onlyUntil next here >>= world

The program is given by defining functions for each scene
that, by referring to each other, define the adjacencies of a
state-transistion graph. Here we use four scenes—club, street,
alley, and cellar—to define the possible transitions between
them. From the club we can reach the street, alley, or cellar:

clubNext ::Monad m⇒ (a, Image) → Event (Scene m a)
clubNext (A0,) = Event (Scene (street, arr streetNext))
clubNext (A1,) = Event (Scene (alley, arr alleyNext))
clubNext (A2,) = Event (Scene (cellar, arr cellarNext))
clubNext = NoEvent

The street and alley are connected:

streetNext ::Monad m⇒ (a, Image) → Event (Scene m a)
streetNext (A0,) = Event (Scene (club, arr clubNext))
streetNext (A1,) = Event (Scene (alley, arr alleyNext))
streetNext = NoEvent

alleyNext ::Monad m⇒ (a, Image) → Event (Scene m a)
alleyNext (A0,) = Event (Scene (club, arr clubNext))
alleyNext (A1,) = Event (Scene (street, arr streetNext))
alleyNext = NoEvent

And the cellar is a dead end:

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

cellarNext ::Monad m⇒ (a, Image) → Event (Scene m a)
cellarNext (A0,) = Event (Scene (club, arr clubNext))
cellarNext = NoEvent

Here A0 , A1, etc. are arbitrary patterns of user commands
carried by the input signal, which cause the scene to change
as each equation specifies. The expression for this automaton
beginning from the club isworld (Scene (club, arr clubNext)).

5.4 Graphical User Interfaces
The signal that drives the transitions between scenes is a
stream of user commands coming from either the top-level
input signal or another signal function. Let us consider the
latter case. The signal function transmitting these commands
can also display a window on the screen containing button
icons. It can receive “feedback” from the user, who actu-
ates the buttons using a mouse. In response, it can issue a
command. The overall, combined signal function might be

game ::Monad m⇒ SF m Mouse Image
game = proc mouse→ do

(imageG, cmd) ← gui −≺mouse
imageS ← scene −≺ cmd
returnA −≺ imageG ♦ imageS

where scene = loopMode (world (club, arr clubNext))

The signal function gui has two output channels carrying,
respectively, an image of the window and a command event.
It depends on an input signal carrying the state of the mouse.
Expressing the simultaneity of the command event and

a button press is a standard matter of using a generic edge
detector to generate a stream of click events, which we trans-
form to include a command. We do not need to design ad-
ditional mode switching for that. However, we may want
to move the window around the screen by clicking on it
and moving the mouse while we hold the button down. This
progresses in three modes specific to the problem:

1. The cursor lies outside the window.
2. The cursor lies inside, and the mouse button is lifted.
3. The cursor lies inside, and the mouse button is pressed.

Some of these modes have different behaviors; most obvi-
ously, the window only moves during the third mode. Indeed,
each mode might have unique behavior, such as a special
window animation when the cursor is hovering over the
window. We can script this as

gui ::Monad m⇒ SF m Mouse (Image, a)
gui = loopMode window

window ::Monad m⇒ Mode m Mouse Image c
window = do onlyUntil enter idle

onlyUntil exit
(forever (do onlyUntil press hover

onlyUntil loose move))

Here, idle, hover , and move define each mode’s output. We
express their switching conditions with enter , exit, press, and
loose, which map the signal carrying the state of the mouse
to event streams that report the cursor crossing the window
boundary and the mouse button clicking down and up.

6 Related Work
Peterson and colleagues first presented a monadic interface
to mode-switching robot behaviors in Frob, a system for con-
trolling robots with functional reactive programming [23].
Their initial work represents task plans with a monad that
wraps a continuation-passing-style (CPS) function, and it
defines operators that add error handling and time limits to
tasks. Later treatments develop operators for adding extra ter-
mination conditions and composing tasks in parallel [13, 22].
That work emphasizes tasks as high-level plans for robots,
not a general-purpose interface to mode switching.

In later research on Frob, Pembeci and colleagues develop
the task abstraction in terms of signal functions [20]. For in-
tuition they propose to represent tasks with signal functions
of type SF a (b, Event c), though they do not discuss how
to implement this. They present an operation, analogous to
runMode, for mapping tasks to signal functions. It handles
tasks that terminate immediately (like our recessive modes)
by producing only signal functions whose output signal has
the sum type Either b c. Our method, on the other hand,
expresses modes of signal functions with any output type.
Although it goes unmentioned in their first publications

about Yampa, Courtney and Nilsson included a module for
these signal function tasks in their source code as early as
2003 [4]. There they represent a task with a CPS function
of type (c → SF a (Either b d)) → SF a (Either b d), in
contrast to our direct-style type, SF a (Either b c). They de-
fine primitive tasks, early-termination transformations, and
operations for mapping between tasks and signal functions.
The CPS representation allows them to define (>>=) without
link, but adds complexity to functions that transform tasks.
More recently, Perez and colleagues cast mode switch-

ing as exception handling in monadic stream functions [21].
They show that, given a monad parameter with exception
handling, stream processors can apply a handler to com-
pute an alternative output sample and continuation. If the
monad also includes a Reader-like environment to provide
an implicit time step, the stream processors can represent
mode-switching signal functions.
Bärenz and Perez went on to present a monadic inter-

face for these exception handlers [1]. To represent recessive
modes they directly lift an exception action to a stream pro-
cessor. Applying this general scheme to processors with a
Reader environment is nontrivial because both exceptions
and handlers presume to cover the same time step. Our ap-
proach avoids this issue by not representing mode switching
and time steps separately.

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

7 Discussion
7.1 Advantages over Imperative Scripts
Signal function scripts are high-level expressions that de-
note only infrequent transitions between discrete states, but
they have a direct relation to the actual, high-frequency
transitions between machine states that approximate con-
tinuous time as a rapid succession of time steps. In con-
trast, many imperative programming systems call their pro-
grams scripts, but they do not support such high-level expres-
sions [6, 10, 18]. They express behavior over long intervals
merely as long sequences of low-level state transitions over
short intervals, each one barely perceptible. A line in such a
script runs and terminates as fast as possible, and any observ-
able output occurs only after the line terminates. We must
infer from its short-interval behavior whatever long-interval
behavior the script might express.
Many scripting architectures group those short-interval

behaviors into callbacks or handlers for named events [3,
9, 15]. This gives us some certainty about when state tran-
sitions happen on a longer time scale. However, the scope
of those transitions is seldom clearly defined, and the ex-
tent of their consequences is seldom obvious from a single
handler expression [24]. For example, it is often natural for
one object to have two event handlers that read from and
overwrite the same set of variables. This allows one han-
dler to permanently alter the effect of the other without any
clear expression of a causal relationship. The sets of future
transitions caused by these two event handlers are there-
fore difficult to distinguish from each other. They are totally
ambiguous when the events occur simultaneously—to cover
that case we must further define, somewhere, the relative
timing of the handlers.
In comparison, the consequences of mode switching in

signal functions are always restricted to the same output
signal, which is explicit in the expression of the signal func-
tion, its type, and the other expressions we combine it with.
The input signal is unchanged except in cases where we feed
the output back to it, and these cases too are notated explic-
itly. The causes and resolutions of concurrent sequences are
explicit in each instance of (>>=), voice, and chorus.

7.2 Limitations and Future Work
Our representation of modes does not support Yampa’s de-
layed switching, where the output sample at the moment
of switching comes from the first component rather than
the second. In this sense the observable effect of the switch
is delayed by one time step. In contrast, our representation
assumes that this is not the case. The representative signal
functions have output signals of type Either b c, so the out-
put sample of the mode preceding the moment of switching
is undefined at that moment. We could instead use the type
(b, Event c), though we run into ambiguity when defining
this kind of output for recessive modes. This may allow one

to express delayed switching by marking delayed modes
with a different constructor.

The necessity of lifting ordinary modes in a multithreaded
script is annoying. Ideally these scripts would more closely
resemble standard thread code. There may be a way to omit
the ContT monad transformer and handle continuations di-
rectly in our monad without impairing its other features.
Our approach performs as well in our examples as the

ordinary use of Yampa does, but we have not fully analyzed
its efficiency. Introducing vain probably does not increase the
maximummemory use of Yampa programs, because they can
in principle retain signal function remainders with pSwitch
at the same rate as they can with vain (see Appendix B.2).
Nonetheless, it is worth determining whether performance
may degrade unexpectedly in certain cases.

7.3 Conclusion
Switching between different modes is a critical capacity of
signal functions. We have developed a programming inter-
face that provides straightforward and flexible access to this
capacity, and we have demonstrated how to apply it. The
variety of signal functions that we find cause to control with
scripts, and the simplicity of writing and executing them,
throw further light on the significance of functional reactive
programming. It is remarkable how simple it is to express so
many different behaviors with such consistency of meaning.

Acknowledgements
The author thanks the anonymous reviewers for their help-
ful suggestions, in particular the suggestion that the type
Either b c, rather than (b, Event c), could serve as the output
type in the mode representation. The author also thanks
Ivan Perez and Henrik Nilsson for their correspondence and
conversation, which helped develop this paper.

A Associative Property of link
We want to show that, given the definition in section 3.1, it
is always the case that

(m1 ‘link‘ λc1 → · · ·m2) ‘link‘ λc2 → · · ·m3
=m1 ‘link‘ (λc1 → · · ·m2 ‘link‘ λc2 → · · ·m3)

Proof. There are two possibilities: either the output of m1 is
forever equal to Left b for some b, or after a finite number
of time steps it is equal to Right c for some c. In the former
case link never applies its continuation, so it is clear that

∀x m1 ‘link‘ x = m1

∴ (m1 ‘link‘ λc1 → · · ·m2) ‘link‘ λc2 → · · ·m3 = m1

∴m1 ‘link‘ (λc1 → · · ·m2 ‘link‘ λc2 → · · ·m3) = m1

Hence we need only consider the latter case, where after a
finite number of time steps link applies its continuation. By
substituting the body of link for applications of it, we know

Haskell ’20, August 27, 2020, Virtual Event, USA David A. Stuart

(m1 ‘link‘ λc1 → m2) ‘link‘ λc2 → m3

= MSF (λa→ do
(bc2,m′2) ← (do
(bc1,m′1) ← unMSF m1 a
case bc1 of
Right c1 → unMSF ((λc1 → m2) c1) a
Left b1 → return (Left b1, link m′1 (λc1 → m2)))

case bc2 of
Right c2 → unMSF ((λc2 → m3) c) a
Left b2 → return (Left b2, link m′2 (λc2 → m3)))

The do notation in the body of link expresses an action in
the parameter monad of the monadic stream function. For
signal functions we assume that this monad satisfies the law
of associativity. Therefore, the above expression is equal to

MSF (λa→ do
(bc1,m′1) ← unMSF m1 a
case bc1 of

Right c1 → do
(bc2,m′2) ← unMSF ((λc1 → m2) c1) a
case bc2 of
Right c2 → unMSF ((λc2 → m3) c2) a
Left b2 → return (Left b2, link m′2 (λc2 → m3))

Left b2 → return (Left b,
(m′1 ‘link‘ (λc1 → m2))

‘link‘ (λc2 → m3)))

Finally, if we substitute an application of link for its body in
the first clause of the first case expression, abstract the appli-
cation over the argument value a, and wrap the abstraction
in the MSF constructor, we have

MSF (λa→ do
(bc1,m′1) ← unMSF m1 a
case bc1 of

Right c1 → unMSF ((λc1 →
m2 ‘link‘ (λc2 → m3)) c1) a

Left b1 → return (Left b1,
(m′1 ‘link‘ (λc1 → m2))

‘link‘ (λc2 → m3)))

Except for the association of terms in the second clause of
the case expression, where the output is equal to Left b1,
this would clearly be equal to the body of link, and we could
substitute the application

m1 ‘link‘ (λc1 → m2 ‘link‘ λc2 → m3)

for it. This is what we wanted to show, but it is not obvious
that it is true.
To see why we can make this substitution anyway, note

that the second clause is not evaluated for every remainder
m′1 of m1—we are considering only the case where after a
finite number of time steps the auxiliary output is equal to
Right c1 for some c1. Therefore we may repeat the above

derivation for each remainder m′1 in those preceding time
steps. At that point our desired equality will be clearly true
because it will not depend on the second case clause. There-
fore we can substitute the other association in the second
case clause of every preceding expression. Therefore, in both
the case wherem1 terminates and the case where it does not,

(m1 ‘link‘ λc1 → · · ·m2) ‘link‘ λc2 → · · ·m3
=m1 ‘link‘ (λc1 → · · ·m2 ‘link‘ λc2 → · · ·m3)

□

B Alternative Implementations
It is possible to implement in Yampa, without new primitives,
some facilities like those described in this paper. These alter-
natives contrast with and further motivate our approach.

B.1 Naive CPS Representation
Partially applying switch to its first argument yields a func-
tion in continuation-passing style:

switch sf :: (c → SF a b) → SF a b

We can wrap this with the CPS monad:

cont (switch sf) :: Cont (SF a b) c

This allows us to separate modes from their continuations in
a way that the raw use of switch does not, and it requires no
languages changes. However, it introduces a new limitation
as well, namely that there is no way to transform modes.
That is, there is no function g of these CPS functions for
which there exists a function f of signal functions such that,
for all signal functions sf ,

g (switch sf) = switch (f sf)

The function g could apply (switch sf) to a continuation,
which does not change the mode. It could subsequently apply
some function to the result, which changes the first mode
only inasmuch as it changes both modes together. Working
around such a limitation has proved awkward.

B.2 Remainders from Switching Functions
Several switching functions have access to signal function
remainders, and we can use them to export as a signal some-
thing like a remainder. For a signal function of type SF a b
this is a value of type

newtype KeepSF a b = KeepSF (SF a (b,KeepSF a b))

which has an extra output signal. That extra signal has the
same type as its source: KeepSF a b.

We can express this signal using kSwitch, which upon an
input event captures the current remainder of the original
signal function:

kSwitch :: SF a b→ SF (a, b) (Event c)
→ (SF a b→ c → SF a b)
→ SF a b

Scripted Signal Functions Haskell ’20, August 27, 2020, Virtual Event, USA

To make the interface simple we can define this event inside
a function keep. We say that this event “occurs” at every
moment (after the first), so the remainder is always up to
date (within one time step). keepmaps a signal function to its
corresponding KeepSF value that exports its own remainder:

keep :: SF a b→ KeepSF a b
keep sf = KeepSF (kSwitch kf d k)
where kf = sf &&& constant (keep sf)

d = constant (Event ()) >>> notYet
k sf ′ = n
where n = kSwitch kf ′ d k

kf ′ = sf ′ >>>
second (constant (KeepSF n))

The last parameter k of kSwitch is a continuation that defines
the value of the signal function after the switching event. It
is applied to the captured remainder, and the result is almost
identical except that it replaces the old output remainder
with the new one.

This requires no language changes, and the result is almost
as good as that of vain. It is however an awkward caricature
of the intendedmeaning of events and switching. To use it we
must incessantly wrap and unwrap the KeepSF constructor,
and we must accept that the output remainder is always
delayed by one time step from the signal function it comes
from. On all of these points it is better to include vain as a
new primitive in the language.

Note that we cannot use kSwitch, or any of Yampa’s switch-
ing functions, to export a signal function’s remainder as a
signal without defining that signal’s type recursively, as we
defined KeepSF a b. The result of kSwitch provides its own
remainder to the continuation k, which just produces a re-
mainder of the same type. Therefore that type must account
for all output signals of the result of kSwitch. Since k’s pur-
pose is to turn the remainder into a signal, one of those
output signals must be the remainder itself. Therefore the
type must be recursive.

References
[1] Manuel Bärenz and Ivan Perez. Rhine: FRP with type-level clocks.

In Proceedings of the 11th ACM SIGPLAN International Symposium
on Haskell, Haskell 2018, page 145–157, New York, NY, USA, 2018.
Association for Computing Machinery.

[2] Albert Benveniste and Gérard Berry. The synchronous approach to
reactive and real-time systems. Proceedings of the IEEE, 79(9):1270–
1282, 1991.

[3] Gregory Bollella and James Gosling. The real-time specification for
Java. Computer, 33(6):47–54, 2000.

[4] Antony Courtney and Henrik Nilsson. Yampa: library for program-
ming hybrid systems [source code]. https://hackage.haskell.org/
package/Yampa-0.9.1.1, 2003. Retrieved March 2020.

[5] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa
arcade. In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell,

Haskell ’03, page 7–18, New York, NY, USA, 2003. Association for
Computing Machinery.

[6] Thijs Jeffry de Haas, Tim Laue, and Thomas Röfer. A scripting-based
approach to robot behavior engineering using hierarchical generators.
In 2012 IEEE International Conference on Robotics and Automation,
pages 4736–4741. IEEE, 2012.

[7] Angela Di Febbraro, Davide Giglio, and Nicola Sacco. Urban traffic
control structure based on hybrid Petri nets. IEEE Transactions on
Intelligent Transportation Systems, 5(4):224–237, 2004.

[8] Conal Elliott and Paul Hudak. Functional reactive animation. In
Proceedings of the Second ACM SIGPLAN International Conference on
Functional Programming, ICFP ’97, page 263–273, New York, NY, USA,
1997. Association for Computing Machinery.

[9] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t call
us, we’ll call you: Characterizing callbacks in JavaScript. In 2015
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–10. IEEE, 2015.

[10] Diego Garcés. Scripting language survey. Game Programming Gems,
6(2006):323–340, 2006.

[11] George Giorgidze and Henrik Nilsson. Switched-on Yampa. In In-
ternational Symposium on Practical Aspects of Declarative Languages,
pages 282–298. Springer, 2008.

[12] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid dynam-
ical systems. IEEE Control Systems Magazine, 29(2):28–93, 2009.

[13] Gregory D Hager and John Peterson. Frob: A transformational ap-
proach to the design of robot software. In Robotics Research, pages
257–264. Springer, 2000.

[14] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1):67 – 111, 2000.

[15] Mike McShaffry and David Graham. Game Coding Complete. Course
Technology, Boston, 2013.

[16] Pieter J Mosterman and Gautam Biswas. A theory of discontinuities in
physical system models. Journal of the Franklin Institute, 335(3):401–
439, 1998.

[17] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell, Haskell ’02, page 51–64, New York, NY,
USA, 2002. Association for Computing Machinery.

[18] John K Ousterhout. Scripting: Higher level programming for the 21st
century. Computer, 31(3):23–30, 1998.

[19] Ross Paterson. A new notation for arrows. In Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, page 229–240, New York, NY, USA, 2001. Association for
Computing Machinery.

[20] Izzet Pembeci, Henrik Nilsson, and Gregory Hager. Functional reac-
tive robotics: An exercise in principled integration of domain-specific
languages. In Proceedings of the 4th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming, PPDP ’02,
page 168–179, New York, NY, USA, 2002. Association for Computing
Machinery.

[21] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. Functional reactive
programming, refactored. In Proceedings of the 9th International Sym-
posium on Haskell, Haskell 2016, page 33–44, New York, NY, USA, 2016.
Association for Computing Machinery.

[22] John Peterson and Greg Hager. Monadic robotics. In Proceedings of
the 2nd conference on Domain-specific languages, pages 95–108, 1999.

[23] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion:
Controlling robots with Haskell. In Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages, PADL ’99, page
91–105, Berlin, Heidelberg, 1999. Springer-Verlag.

[24] Miro Samek. Who moved my state? Dr. Dobb’s Journal, April 2003.

https://hackage.haskell.org/package/Yampa-0.9.1.1
https://hackage.haskell.org/package/Yampa-0.9.1.1

	Abstract
	1 Introduction
	2 Background
	2.1 Continuous Behaviors
	2.2 Discrete Behaviors
	2.3 Expressions of Mode Switching

	3 Sequential Modes
	3.1 Linking Signal Functions Associatively
	3.2 Representing Modes
	3.3 Signal Functions from Modes
	3.4 Modes from Signal Functions
	3.5 Other Primitive Modes
	3.6 Transforming Modes

	4 Concurrent Modes
	4.1 Parallel Switching in Yampa
	4.2 Access to Remainders of Signal Functions
	4.3 Combining Modes in Parallel
	4.4 Multithreaded Scripts

	5 Examples
	5.1 Animation Playback
	5.2 Character Behaviors
	5.3 Scene Changes
	5.4 Graphical User Interfaces

	6 Related Work
	7 Discussion
	7.1 Advantages over Imperative Scripts
	7.2 Limitations and Future Work
	7.3 Conclusion

	A Associative Property of link
	B Alternative Implementations
	B.1 Naive CPS Representation
	B.2 Remainders from Switching Functions

	References

