
COARSE TETRAHEDRAL MESHING FOR

INTERACTIVE SIMULATION

by

David Alexander Stuart

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2013

Copyright c© David Alexander Stuart 2013

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of David Alexander Stuart

has been approved by the following supervisory committee members:

Adam W. Bargteil , Chair 3/29/2013

Date Approved

Joshua A. Levine , Member
Date Approved

Cem Yuksel , Member 4/2/2013

Date Approved

and by Alan Davis , Chair of

the Department of School of Computing

and by Donna M. White, Interim Dean of the Graduate School.

ABSTRACT

We present a procedure for generating a coarse, high-quality, tetrahedral mesh whose

exterior surface encloses and approximates a given triangle mesh. A tetrahedral mesh is

useful for computing perturbation of the triangle mesh based on continuum mechanics:

perturbation such as plastic flow, fracture, and elastic deformation. The computer

graphics community has long used this physics-based simulation to produce animations of

objects exhibiting such physical phenomena. Interactive animation applications such as

industrial design, medical training, and computer entertainment require meshes that are

particularly efficient and robust, and our meshing procedure targets these properties. We

begin with a BCC background lattice and sculpt an initial mesh from it whose tetrahedra

occupy some of the volume bounded by the triangle mesh. We then refine this initial mesh

with an iterative optimization procedure that simultaneously minimizes the distance from

the triangle mesh to the surface of the tetrahedral mesh and maximizes the numerical

quality of the tetrahedra. Our procedure provides a trade-off among the mesh’s quality,

resolution, and degree of approximation of the triangle mesh.

To Gina Vasiloff, whose friendship made this work possible.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

CHAPTERS

1. INTRODUCTION . 1

2. RELATED WORK . 3

3. RESEARCH . 6

3.1 Initial Mesh Generation . 6
3.1.1 BCC Lattice . 6
3.1.2 Sculpting . 7
3.1.3 Defusing the Bombs . 8

3.2 Mesh Optimization . 11
3.2.1 Vertex Updates . 12
3.2.2 Continuous Collision Detection . 13
3.2.3 Stopping Condition . 13

3.3 Implementation Details . 13

4. RESULTS AND DISCUSSION . 15

5. CONCLUSION . 26

REFERENCES . 27

LIST OF FIGURES

1.1 A spherical surface mesh is embedded in four different volume meshes. From
left to right, each volume mesh’s surface approximates the original surface
mesh more accurately than that of the previous volume mesh. 1

1.2 A spherical surface mesh (left) is superposed with a nonenclosing (middle)
and an enclosing (right) volume mesh. 2

3.1 The tetrahedra of the BCC lattice. The lattice is constructed from two
grids, and the points of each grid lie at the cell centers of the other grid.
The tetrahedra are all like the one shown at right: in both grids, two of the
tetrahedron’s vertices are at the centers of adjacent cells. 7

3.2 Three cases of an element occupying part of the volume bounded by the
surface mesh. On the left, a vertex of the element is inside the bounded
volume. In the center, a vertex of the surface mesh is inside the element.
On the right, an edge of the element intersects two triangles of the surface
mesh. 8

3.3 An initial mesh with a single bomb element. The bomb element, in front
and darkly colored, has two faces on the surface of the mesh. The other
elements, lightly colored, each have at most one face on the surface. 9

3.4 A snowflake. Each element in this set is incident to the vertex in the center. 10

3.5 Given the crescent-shaped surface mesh on the left, our generated volume
mesh is on the right as it stands after sculpting and before optimization. . . 11

4.1 The four surface meshes we used as input for our tests. From left to right,
they are called “banana,” “Homer,” “sculpture,” and “dragon.” 15

4.2 Our generated volume meshes for the banana surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of
elements for each row is, from bottom to top, 447, 562, 912, and 2303. The
offset band ratio for each column is, from left to right, 0.2, 0.4, 0.6, and 0.8. 16

4.3 Our generated volume meshes for the Homer surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of
elements for each row is, from bottom to top, 556, 720, 958, and 2497. The
offset band ratio for each column is, from left to right, 0.4, 0.6, and 0.8. . . . 18

4.4 Our generated volume meshes for the sculpture surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of
elements for each row is, from bottom to top, 1824, 3822, 4767, and 6204.
The offset band ratio for each column is, from left to right, 0.4, 0.6, and 0.8. 19

4.5 Our generated volume meshes for the dragon surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of
elements for each row is, from bottom to top, 951, 1252, 1831, and 2834.
The offset band ratio for each column is, from left to right, 0.6 and 0.8. . . . 21

vii

CHAPTER 1

INTRODUCTION

Physics-based animation of deforming, flowing, and fracturing materials is an attrac-

tive part of computer graphics both because the problems are easy to express mathemati-

cally and because the solutions are so visually interesting. As a result graphics researchers

have produced a rapidly growing body of technique for computing these animations, and

such animations appear increasingly often in film and computer entertainment.

Computing physics-based perturbation of a given polygonal surface mesh often de-

mands a polyhedral volume mesh on which to compute forces. The finite element method

is one such instance. The forces are used to compute the displacement of the volume

mesh vertices. One can thence compute the displacement of the surface mesh vertices by

embedding the surface mesh in the volume mesh.

The choice of volume mesh can significantly influence the resulting animation in a

number of ways. First, the degree to which the volume mesh’s surface approximates

the original surface mesh (see Figure 1.1) determines how accurately the surface mesh is

perturbed when it is embedded in the volume mesh. It also determines how accurately

a collision between surface meshes can be approximated by a collision between their

respective volume meshes. The surface of the volume mesh must completely enclose the

surface mesh (as shown in Figure 1.2): if any part of the surface mesh is exterior to the

volume mesh, forces on the volume mesh will not accurately inform the perturbation of

Figure 1.1. A spherical surface mesh is embedded in four different volume meshes.
From left to right, each volume mesh’s surface approximates the original surface mesh
more accurately than that of the previous volume mesh.

2

Figure 1.2. A spherical surface mesh (left) is superposed with a nonenclosing (middle)
and an enclosing (right) volume mesh.

the surface mesh. Second, the number of elements in the volume mesh determines the

computational complexity of computing forces on the whole mesh. A mesh with many

elements requires more computational expense than one with few elements. Third, the

numerical quality of the elements determines how accurate the computed forces are and,

in turn, how stable the simulation is.

Therefore, it is desirable to have a systematic way of generating a volume mesh

appropriate for a given simulation and a given surface mesh. There are many such

systems available. However, none of them to date produce enclosing volume meshes

that effectively satisfy the stability and efficiency requirements of interactive simulations.

Their surfaces do not accurately represent the input surface mesh while still enclosing

it, they have too many elements, or their elements are of low quality. Consequently

these meshes, when deployed in the unpredictable and resource-scarce environments of

interactive applications, can ignore significant input features, produce imprecise collision

detection, exceed computation budgets, and cause poorly conditioned simulations.

This paper documents a meshing procedure that mitigates these problems and pro-

vides a trade-off between them. It takes as input a surface mesh of triangular faces and

generates as output a coarse volume mesh of high-quality tetrahedral elements whose

surface approximates the input. It accomplishes this by first sculpting a background

lattice of tetrahedra to a rough initial approximation of the surface mesh. It then

optimizes the surface of the sculpted volume mesh for both element quality and proximity

to the surface mesh simultaneously. A user can determine the coarseness of the initial

lattice (which directly influences the coarseness of the final volume mesh) as well as the

maximum distance between the surface of the final volume mesh and the surface mesh

(which directly influences the similarity between the surface mesh and the final volume

mesh). Both of these parameters can indirectly but reliably influence the quality of the

elements in the final mesh.

CHAPTER 2

RELATED WORK

Tetrahedral tessellation of a given volume is a classic set of problems, and the meshing

community has addressed it extensively. Our meshing problem of interest—generating an

enclosing tetrahedral mesh—has appeared in the literature since Capell and colleagues

introduced the embedding of a surface mesh in a volumetric control mesh for deforma-

tion [9]. That year the same authors argued [10] that a volume mesh that closely fits the

embedded surface mesh allows for more accurate deformations than a regular grid like

that of Müller [28].

Since then the embedding technique has repeatedly appeared as a practical method of

deforming and fracturing surface meshes [17, 24, 36, 40]. The efficacy of a coarse volume

mesh for this technique also became apparent during this time [9, 12, 27, 40]. Research on

this technique has reaffirmed the perennial desirability of high-quality elements [12, 24].

High-quality elements are a primary goal of most tetrahedral meshing procedures.

There are many measures of element quality, as is evident in Shewchuk’s survey, “What

Is a Good Linear Element” [34]. Some are in common use among graphics researchers,

like the ratio of the element’s circumradius to its shortest edge [33], and some have

less cachet, such as the condition number of the linear transformation between a unit

equilateral tetrahedron and the element in question [15]. Different procedures often aim

for quality by different measures, but there are some general approaches that can apply

to many measures at once.

For instance, a classical mesh generation approach called “advancing front” begins

at the volume boundary and sequentially adds well shaped elements based on local

heuristics [3]. Advancing front techniques are straightforward to implement, but they

lack any guarantees of element quality [21]. They can produce low-quality elements on

the surface at sharp corners [5] or in the interior where two advancing fronts meet. This

approach is the basis of the popular “NETGEN” program [30], but modern methods do

not employ it.

4

A second and more popular approach is the use of Delaunay triangulations of points

scattered throughout the volume. The error in a function’s linear approximation defined

piecewise on a Delaunay triangulation is theoretically bounded [3]. This is the motivation

for Delaunay-based algorithms like Shewchuk’s Delaunay refinement [33], Du and Wang’s

centroidal Voronoi tessellations [13], Si’s “TetGen” program [35], and the CGAL 3D mesh

generation package. In one of the earliest examples of Delaunay refinement, Edelsbrunner

and colleagues begin with an assumed set of points to triangulate [14]. In contrast,

choosing the best set of points is a significant corollary problem, and inserting extra

points can improve the refinement process [18, 39]. While in two-dimensional meshes

the Delaunay approach ensures a lower bound on element quality as measured by an

element’s minimum dihedral angle, this is not the case in three-dimensional meshes [38].

The Delaunay approach can produce degenerate elements with extremely poor quality,

and modified approaches meant to prevent them have severely weakened bounds on error

and quality [3].

A third approach, recently gaining considerable traction in the community, begins with

a background lattice of high-quality elements and refines it based on the input domain.

This concept appears in generation algorithms like the “red-green” subdivision described

by Molino and colleagues [25], the level-set technique of Teran and colleagues [37],

“isosurface stuffing” by Labelle and Shewchuk [20], and “lattice cleaving” by Bronson

and colleagues [7]. A lattice-based algorithm ensures good shape and placement of

interior elements and at least encourages the same traits in the surface elements it refines.

However, a lattice alone provides no approximation of the volume boundary.

Fourth, an approach employing octrees appears often in the literature. It finely

discretizes the volume bounded by the input surface with a grid. It then covers the

volume with an octree, refining it until each leaf is entirely inside or outside the dis-

cretization [3]. The leaves are then triangulated. In contrast to a lattice-based method

an octree-based method produces meshes that sample different parts of their domains at

different resolutions: there are many elements on the boundary and fewer in the interior.

It also facilitates remeshing in response to a dynamically changing domain [1]. The octree

approach is the foundation of the “QMG” technique given by Mitchell and Vavasis [23],

and it appears in older methods like those of Buratynski [8], Perucchio and colleagues [29],

and Shephard and colleagues [32].

Finally, an important fifth approach to mesh generation is physics-based vertex op-

5

timization. This approach iteratively refines a mesh with the same methods used for

iteratively solving differential equations in a physics-based simulation—the impetus for

generating a mesh in the first place! This often involves defining an “energy” value

for a given mesh and iteratively changing the vertex positions to reduce the mesh’s

energy: various energy definitions appear in the literature, such as Centroidal Voronoi

Tesselations [13], Optimal Delaunay Triangulations [3], and Hodge-Optimized Triangula-

tions [26]. Both Molino and colleagues [25] and Teran and colleagues [37] propose similar

relaxation procedures using a mass-spring system or the finite-element method.

Like these mesh generation techniques, mesh improvement techniques also value ele-

ment quality. Freitag and colleagues published a widely cited discussion [16] of improving

meshes through smoothing vertices (via Laplacian smoothing or other optimizations

targeted to a specific quality measure) and local edge swaps. Topological operations like

edge swaps often appear in improvement techniques. They include element subdivision, as

Liu proposed [22], as well as more dramatic connectivity changes, as in the simplification

method by Cutler and colleagues [12] and Klingner and Shewchuk’s improvement program

“Stellar” [19].

Procedures for generating volume meshes more specific to the embedding technique

for simulation aim not only for high-quality elements, but also an enclosing mesh whose

surface approximates the input surface. That is, the surface of the volume mesh is

everywhere exterior to the surface mesh. As more general meshing algorithms usually

do not guarantee this property, an enclosing volume mesh is often obtained by meshing

not the input surface but a different surface that is slightly offset from it everywhere

in the normal direction. Shen and colleagues suggest this procedure as an application

of their implicit surface generation algorithm [31]. This procedure ensures an erroneous

approximation of the input, since the offset surface loses the detail of the original surface.

CHAPTER 3

RESEARCH

3.1 Initial Mesh Generation

We take the approach of beginning with a tetrahedral background lattice. This

approach provides generality and a known sampling resolution that can be easily tuned.

The initial volume mesh taken from this background lattice must be chosen to match

the input surface mesh in a way that does not hinder later refinement: our solution is

summarized in Algorithm 1.

Algorithm 1 Initial mesh generation

read input surface mesh S
generate volume mesh (V, T) as BCC lattice
T del ← ∅
T rep ← T
for all Ti ∈ T do

if Ti does not intersect S then
T del ← T del ∪ {Ti}

end if
end for
for all T rep

k ⊆ T del s.t T rep
k covers all bomb elements in T \ T del do

if |T rep
k | < |T

rep| then
T rep ← T rep

k

end if
end for
T ← (T \ T del) ∪ T rep

3.1.1 BCC Lattice

We generate an initial tetrahedral volume mesh, based on a body-centered cubic

(BCC) crystal lattice, that tessellates the space of the surface mesh’s bounding box. The

BCC lattice is known from chemistry and is apparent in many physical crystal structures.

It is a set of points in R3 arranged in two identical cubic grids offset from each other by

half a cell-width in all three dimensions: the points in each grid are positioned at the

7

centers of the other grid’s cells. The Delaunay triangulation of these points defines a set

of tetrahedra, each with two long edges between points in the same grid and four short

edges between points in opposite grids (see Figure 3.1).

This mesh has many desirable properties at once. It is isotropic, as the tetrahedra

are identical and aligned equally often in three orthogonal directions. Its elements have

high quality, each having two dihedral angles of 90◦ and four dihedral angles of 60◦ [20].

Its vertices are an optimal sampling of the volume for representing trivariate functions

like deformation forces [2]. Ideally we would like to change this mesh as little as possible

to retain these properties. Subdivision and connectivity changes can compromise these

properties, so we do not employ such topological techniques.

3.1.2 Sculpting

At this point the volume mesh is still shaped like the bounding box. To better

approximate the shape of the surface mesh we remove those elements that do not occupy

any of the volume bounded by the surface mesh. We determine whether an element

occupies some of the bounded volume using a test for each of three different cases,

illustrated in Figure 3.2. Our first test is fast, but it can produce false negatives. We

check its negative cases further with a pair of slower tests that, together, never produce

false negatives.

We first check whether any of the element’s four vertices is inside the bounded volume.

If an element’s vertex is inside, then some nonzero portion of the element is also inside.

In many cases most of the elements have this property, and checking it first allows us to

Figure 3.1. The tetrahedra of the BCC lattice. The lattice is constructed from two
grids, and the points of each grid lie at the cell centers of the other grid. The tetrahedra
are all like the one shown at right: in both grids, two of the tetrahedron’s vertices are at
the centers of adjacent cells.

8

Figure 3.2. Three cases of an element occupying part of the volume bounded by the
surface mesh. On the left, a vertex of the element is inside the bounded volume. In the
center, a vertex of the surface mesh is inside the element. On the right, an edge of the
element intersects two triangles of the surface mesh.

quickly show that those elements occupy some of the bounded volume. We can quickly

check a vertex for containment in the bounded volume by evaluating a signed distance

field, as described in Section 3.2.3, at the vertex’s position.

Other elements may occupy some of the bounded volume without any of their vertices

being inside it. Our first test will be negative for these elements. In that case we check for

a vertex of the surface mesh being inside the element. Assuming that every surface mesh

vertex has at least one triangle incident to it, a surface vertex being inside an element

implies that some nonzero portion of the triangle is also inside the element. That means

that a portion of the bounded volume close to the triangle intersects that portion of the

element’s volume. While not as efficient as our first test, this test runs relatively quickly,

requiring four dot products for each surface mesh vertex.

If this test is negative, it is still possible that some part of the element is inside the

bounded volume. The element can intersect a triangle of the surface mesh in a section

that does not contain the triangle’s vertices. This can happen even if none of the element’s

vertices is inside the surface mesh, as Figure 3.2 illustrates: an edge between two vertices

outside the surface mesh intersects two surface mesh triangles. To determine if this is the

case, we test every edge of the element for intersection with every triangle in the surface

mesh.

In truth we only check certain vertices and triangles for these last two tests, as

described in Section 3.3.

3.1.3 Defusing the Bombs

After removing all elements that do not occupy any of the volume bounded by the

surface mesh there can be some remaining elements with two or more faces on the surface

9

of the resulting volume mesh—that is, two or more faces not shared with adjacent

elements. An example is shown in Figure 3.3. The quality of these two-surface-face

elements is ruined in our later optimization. As we push the faces on the surface of the

volume mesh to lie close to the surface mesh, these elements’ two surface faces spread out,

with all four vertices becoming nearly coplanar. A tetrahedron in this shape is called a

“sliver,” and it has very low quality. We would like our mesh to contain no such “bomb”

elements that predictably turn into slivers later.

Definition 1. Let T be a set of tetrahedra. A bomb element is a tetrahedron Ti ∈ T that

has two faces f0, f1 ∈ T such that ∀Tj ∈ T , f0 /∈ Tj and f1 /∈ Tj.

As we will show presently the mesh has a bomb element only if the mesh is not the

union of sets of 24 elements incident to a common vertex. We call these sets “snowflakes.”

One is illustrated in Figure 3.4.

Definition 2. Let (VBCC, TBCC) be an infinite, tetrahedral BCC lattice tessellating all of

R3. A set F ⊂ TBCC is a snowflake if ∃ v ∈ VBCC such that ∀Tj ∈ F , v ∈ Tj.

Figure 3.3. An initial mesh with a single bomb element. The bomb element, in front
and darkly colored, has two faces on the surface of the mesh. The other elements, lightly
colored, each have at most one face on the surface.

10

Figure 3.4. A snowflake. Each element in this set is incident to the vertex in the center.

Remark. No element of a snowflake is a bomb element.

Proof. Every element Ti in a snowflake is incident to the snowflake’s common vertex v, an

adjacent body center c, and two vertices a1 and a2 that are each adjacent to both v and

c. Since there are four choices for a1 and a2 another element besides Ti is incident to v,

c, and a1. Therefore the face of Ti defined by those three vertices is shared between two

elements. Similarly another element is incident to v, c, and a2, meaning that a second

face of Ti is shared between two elements. Finally, just as a1 and a2 are each adjacent

to both v and c, there is another body center c′ adjacent to v such that a1 and a2 are

each adjacent to both v and c′. Therefore another element is incident to a1, a2, and v,

meaning that a third face of Ti is shared between two elements. Hence Ti has at most

one unique face and is not a bomb element.

Proposition. Let TBCC be the elements of an infinite, tetrahedral BCC lattice tessellating

all of R3. Let S be the set of all snowflakes F ⊂ TBCC. ∀T ⊂ TBCC, if ∃ST ⊂S such that⋃
F∈ST

= T , then T contains no bomb elements.

Proof. If ∃ST ⊂ S such that
⋃

F∈ST
= T , then ∀Ti ∈ T , ∃F ∈ ST such that Ti ∈ F and

F ⊆ T . Therefore every Ti ∈ T is in a snowflake, all of whose elements are contained in

T . Therefore T does not contain a bomb element.

The mesh is initially a union of snowflakes. If the mesh contains a bomb element after

the removals described above, then it is because we removed elements from all snowflakes

that contain that element.

We fix this by replacing elements in such a way that every element that was a bomb

after the removals is in a complete snowflake after the replacements. For each bomb

11

element we replace all removed elements that are incident to one of its vertices. This

ensures that the snowflake centered at that vertex—one of the snowflakes that contains

the bomb element—is part of the mesh.

In choosing which of each bomb element’s four vertices to consider for this replacement

process we do a global search of the possible combinations of vertices across all bomb

elements and choose the one that minimizes the number of replaced elements.

Initially the mesh happens to be a union of snowflakes centered on vertices that all

lie in only one of the two staggered grids in the BCC lattice. Because of this we earlier

attempted to retain the snowflakes in this particular union that contained an element that

intersected the surface mesh. Such a mesh is indeed a union of snowflakes and contains

no bomb elements, but it contains far more elements than the mesh described above.

We also attempted to remove bomb elements with a simpler scheme than replacing

snowflakes: we subdivided each bomb element into four elements, each incident to the

bomb element’s centroid. This indeed resulted in a mesh without bomb elements, but the

subdivided elements nonetheless became slivers. Intuitively this is because there were no

new vertices to update on the surface of the volume mesh. The faces of the original bomb

element were still pressed into a sliver even though the sliver was subdivided.

3.2 Mesh Optimization

At this point we have an enclosing volume mesh free of known problem elements, but

its surface approximates the surface mesh rather poorly (see Figure 3.5). To improve this

approximation we iteratively optimize the volume mesh vertices as outlined in Algorithm

2. This minimizes the distance between the surface mesh and each vertex on the volume

mesh’s surface, and it maximizes the quality of all of the volume mesh’s elements.

Figure 3.5. Given the crescent-shaped surface mesh on the left, our generated volume
mesh is on the right as it stands after sculpting and before optimization.

12

Algorithm 2 Mesh optimization

compute volume mesh surface (Vsurf , F), where Vsurf ⊆ V
compute signed distance field d for S
while ∃xi ∈ V s.t. d(xi) > doffset do

for all xn
i ∈ V do

xn+1
i ← xn

i +

 1

|Ωi|
∑

Tj∈Ωi

|Tj |cj − xn
i

∆t

end for
move all xn

i ∈ Vsurf toward xn+1
i subject to continuous collision detection

end while

3.2.1 Vertex Updates

In every iteration we update the position of each vertex based on the tetrahedra

incident to it. Our calculation for the new position is based on the work of Alliez and

colleagues [3], who showed that the Optimal Delaunay Triangulation energy of Chen [11]

for a given mesh, formulated as

EODT =
1

n + 1

∑
i=1...N

∫
Ωi

||x− xi||2dx (3.1)

is minimized by vertex positions

x∗i =
1

|Ωi|
∑

Tj∈Ωi

|Tj |cj (3.2)

where Ωi is the set of elements incident to vertex xi, |Ωi| is the cumulative volume of the

elements in Ωi, and cj is the circumcenter of Tj .

In contrast to Alliez and colleagues we do not move the vertices to these new po-

sitions. Instead we move them toward these positions by an amount proportional to a

predetermined time step. This has the effect of iteratively drawing the surface of our

volume mesh inwards while optimizing the quality of the elements in response.

This method of updating vertices produces results superior to those of our earlier

experiments. At first we only updated the vertices on the surface of the volume mesh. We

moved them in the direction of the negative gradient of the signed distance field described

in Section 3.2.3. This resulted in poor-quality elements incident to those vertices. In

response we tried a two-phase procedure, first maximizing proximity to the surface mesh

and then optimizing the interior elements. This second phase involved moving vertices

toward the average position of their adjacent vertices. While this did improve the mesh,

it was not as effective as doing the simultaneous update described above.

13

3.2.2 Continuous Collision Detection

When we update the vertex positions in this way the surface of the volume mesh may

eventually intersect the surface mesh. Because we desire an enclosing mesh we prevent

this intersection by updating the vertices on the surface of the volume mesh separately

from the other vertices. We treat these vertices and the tetrahedron edges between them

as a surface that we advect, subject to continuous collision detection, toward the regular

updated positions given by Equation (3.2).

Continuous collision detection is an a priori method that detects collisions between

timesteps. It checks for two cases of collisions: one where a vertex passes through a

triangle, and another where an edge passes through another edge. It is often used

to simulate cloth and liquid interfaces, where a surface with many degrees of freedom

can become irreparably tangled when using a posteriori collision detection methods.

This makes it well-suited for our volume mesh surface, which also has many degrees of

freedom. Our particular brand of continuous collision detection is that given by Brochu

and Bridson [6], but we do not perform the improvements or topological changes that

they describe.

3.2.3 Stopping Condition

We stop iterating when every vertex on the surface of the volume mesh is within some

predefined distance doffset of the surface mesh. We evaluate the distance between the

surface mesh and a volume mesh vertex using a signed distance field representing the

surface mesh. At the beginning of each iteration we evaluate the field at the position of

each vertex on the surface of the volume mesh. If any of these values are greater than

doffset we carry out the current iteration.

We approximately represent this field by precomputing an octree of distance values

that we construct based on the surface mesh, as do Bargteil and colleagues [4], allowing

us to rapidly evaluate distances once per vertex in each iteration.

3.3 Implementation Details

In sculpting the initial volume mesh our second test for whether an element occupies

any of the volume bounded by the surface mesh ostensibly runs once for each vertex in

the surface mesh. Similarly the third test runs once for each triangle. We actually know

beforehand that these tests will be negative for any vertex (or triangle) that lies outside

the element’s circumsphere. Therefore we only run the tests for vertices and triangles

14

that are not outside the element’s circumsphere. This produces a significant speedup in

our implementation, especially for surface meshes with many vertices and triangles.

In culling triangles an explicit triangle-sphere intersection test can be as expensive as

the test that we are trying to obviate. Given our focus on coarse volume meshes for fine

surface meshes, our triangles are so much smaller than our element circumspheres that

we can simply check whether the triangle’s centroid is inside the circumsphere.

CHAPTER 4

RESULTS AND DISCUSSION

We implemented the procedure described above and used our implementation program

to generate volume meshes for four different surface meshes, shown in Figure 4.1. For

each surface mesh we ran our program several times, each time starting with a different

background lattice resolution and ending at a different offset distance. In the tables that

follow we compare the output based on several measurements. Because a single, absolute

offset distance is inappropriate for a set of volume meshes with different resolutions, we

instead compare volume meshes with a common ratio between each one’s offset distance

doffset and the width h of a grid cell in its initial lattice.

To portray mesh quality we report the minimum and maximum dihedral angles among

all elements in each volume mesh, because the condition number of a finite-element

computation on a given tetrahedral mesh depends on the lowest-quality tetrahedron in

the volume mesh. To portray the degree to which the surface of the volume mesh ap-

proximates the surface mesh we also report the minimum, maximum, and mean distance

from the surface mesh among all vertices on the surface of the volume mesh. We also

report the ratio of the volume mesh’s volume to the surface mesh’s volume.

Our volume meshes for the banana surface, shown in Figure 4.2, mesh make clear the

ability of our method to produce a set of viable volume meshes whose properties pre-

Figure 4.1. The four surface meshes we used as input for our tests. From left to right,
they are called “banana,” “Homer,” “sculpture,” and “dragon.”

16

Figure 4.2. Our generated volume meshes for the banana surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of elements for each
row is, from bottom to top, 447, 562, 912, and 2303. The offset band ratio for each
column is, from left to right, 0.2, 0.4, 0.6, and 0.8.

17

dictably respond to changing parameters, providing a tradeoff between quality, efficiency,

and proximity to the input. Except for one case, the meshes’ minimum dihedral angles

increase as the mesh resolution increases. In all cases their minimum angles increase as

the offset distance is increased: this behavior is seen in all of our examples. The banana

example also demonstrates that our method handles cases of concavity and negative

curvature in the surface mesh.

The Homer surface is a more practical test case. It represents a human character,

and volume meshes of human-shaped surface meshes are often in demand in computer

animation. This surface has features of varying size, areas of varying curvature, and

segments that are intuitively separate (those corresponding to the character’s arms, legs,

and head). Our method produces volume meshes that respect these aspects, as shown

in Figure 4.3. They are recognizably human-shaped—notably preserving the arms and

head as separate segments—and they approximate different parts of the surface equally

well.

Homer brings out some idiosyncratic behavior in our method. While the generated

volume meshes are of reasonably good quality and approximate the surface mesh reason-

ably well their quality measures do not vary with resolution in a straightforward way.

We can get a sense of why this happens by observing that the volume meshes with 556

elements generally capture more features of the surface mesh than do the volume meshes

with 720 elements. We would expect the volume mesh with more elements to have more

degrees of freedom, allowing its surface more opportunity to conform to the surface mesh.

The meshes defy this expectation perhaps because the finer volume mesh has a greater

number of elements that must approximate the same features, hindering each other’s

ability to do so. If this has such an unexpected effect on how well the volume mesh’s

surface approximates the surface mesh, then it is conceivable that it also has unexpected

effects on element quality.

The sculpture surface mesh is interesting because it has sharp edges and nonzero

genus. Our method handles these properties automatically, as shown in Figure 4.4. Our

sculpting strategy described in Section 3.1 requires no special case for holes or interior

hollows like those of the sculpture. The surface of our volume meshes can faithfully match

the sharp edges of the surface mesh without introducing degenerate elements.

The dragon surface mesh has myriad small features and an intuitive shape (that of

a snake) that is compressed into a different shape. Our method handles the former

18

Figure 4.3. Our generated volume meshes for the Homer surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of elements for each
row is, from bottom to top, 556, 720, 958, and 2497. The offset band ratio for each
column is, from left to right, 0.4, 0.6, and 0.8.

19

Figure 4.4. Our generated volume meshes for the sculpture surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of elements for each
row is, from bottom to top, 1824, 3822, 4767, and 6204. The offset band ratio for each
column is, from left to right, 0.4, 0.6, and 0.8.

20

aspect, generating volume meshes, shown in Figure 4.5, that conform to the surface

mesh’s concavities to a degree that varies continuously with the resolution of our initial

lattice. It does not automatically address the latter aspect. The closely positioned but

distantly connected parts of the surface mesh, such as the dragon’s mouth, are smaller

than our target resolution, and we do not capture them. For lesser offset distances this can

lead to nonconvergence. Our collision detection prevents the vertices of large elements

from reaching into small gaps, leaving them forever farther than doffset away from the

surface mesh in these areas. Given a reasonable offset distance, however, we can produce

a volume mesh of good quality that still displays those features of the dragon that can

be sampled at the volume mesh’s resolution.

This vulnerability of our method—that it ignores thin gaps between intuitively sep-

arate segments—is a topic ripe for future investigation. One way to mitigate this, aside

from increasing the resolution to inefficient levels, is to allow a user to mark certain

segments as separate. The user could specify a plane section that intersects certain

elements in the mesh before the optimization phase begins. We could then duplicate

those elements and disconnect the duplicates, potentially allowing the optimization to

separate them further. Other opportunities for future work include investigating the

cause of the lower-quality elements in our worst volume meshes and devising a better

prediction of volume mesh quality for a given surface mesh and resolution.

More detailed numerical measurements of our volume meshes for the banana, Homer,

sculpture, and dragon surfaces appear in Tables 4.1, 4.2, 4.3, and 4.4, respectively.

21

Figure 4.5. Our generated volume meshes for the dragon surface mesh, each marked
with the minimum dihedral angle of its worst element. The number of elements for each
row is, from bottom to top, 951, 1252, 1831, and 2834. The offset band ratio for each
column is, from left to right, 0.6 and 0.8.

22

Table 4.1. Measurements of volume mesh results pictured in Figure 4.2. The offset band
ratio for each column is, from left to right, 0.2, 0.4, 0.6, and 0.8.

banana, 2303 elements, h = 0.5

doffset 0.1 0.2 0.3 0.4
min. dihedral angle 28◦ 30◦ 42◦ 52◦

max. dihedral angle 146◦ 141◦ 121◦ 102◦

min. distance to surface 0.000457 0.00472 0.0000170 0.000100
max. distance to surface 0.0993 0.199 0.298 0.399
mean distance to surface 0.0201 0.0441 0.0806 0.126

volume ratio 1.06 1.16 1.33 1.59

banana, 912 elements, h = 0.75

doffset 0.15 0.3 0.45 0.6
min. dihedral angle 20◦ 24◦ 25◦ 34◦

max. dihedral angle 155◦ 147◦ 145◦ 131◦

min. distance to surface 0.00121 0.00100 0.00123 0.00186
max. distance to surface 0.149 0.299 0.449 0.598
mean distance to surface 0.0312 0.0393 0.0642 0.120

volume ratio 1.08 1.09 1.16 1.36

banana, 562 elements, h = 1.0

doffset 0.2 0.4 0.6 0.8
min. dihedral angle 5◦ 14◦ 21◦ 34◦

max. dihedral angle 172◦ 159◦ 154◦ 137◦

min. distance to surface 0.00103 0.00103 0.0148 0.0131
max. distance to surface 0.199 0.400 0.600 0.800
mean distance to surface 0.0447 0.0613 0.108 0.195

volume ratio 1.10 1.13 1.26 1.57

banana, 447 elements, h = 1.25

doffset 0.25 0.5 0.75 1.0
min. dihedral angle 1◦ 16◦ 19◦ 30◦

max. dihedral angle 179◦ 143◦ 145◦ 122◦

min. distance to surface 0.00102 0.0111 0.0146 0.0223
max. distance to surface 0.248 0.499 0.748 0.997
mean distance to surface 0.0557 0.0993 0.191 0.328

volume ratio 1.13 1.25 1.57 2.22

23

Table 4.2. Measurements of volume mesh results pictured in Figure 4.3. The offset band
ratios for each column are, from left to right, 0.4, 0.6, and 0.8.

Homer, 2497 elements, h = 0.2

doffset 0.08 0.12 0.16
min. dihedral angle 2◦ 27◦ 45◦

max. dihedral angle 176◦ 142◦ 112◦

min. distance to surface 0.000100 0.000284 0.000151
max. distance to surface 0.0800 0.120 0.160
avg. distance to surface 0.00964 0.0230 0.0486

volume ratio 1.11 1.28 1.63

Homer, 958 elements, h = 0.3

doffset 0.12 0.18 0.24
min. dihedral angle 22◦ 31◦ 42◦

max. dihedral angle 145◦ 138◦ 116◦

min. distance to surface 0.000177 0.000179 0.00126
max. distance to surface 0.120 0.179 0.240
mean distance to surface 0.0283 0.0483 0.0748

volume ratio 1.32 1.52 1.84

Homer, 720 elements, h = 0.35

doffset 0.14 0.21 0.28
min. dihedral angle 9◦ 31◦ 39◦

max. dihedral angle 162◦ 131◦ 112◦

min. distance to surface 0.000136 0.00299 0.00076
max. distance to surface 0.140 0.209 0.279
mean distance to surface 0.0291 0.057 0.086

volume ratio 1.35 1.64 2.00

Homer, 556 elements, h = 0.4

doffset 0.16 0.24 0.32
min. dihedral angle 22◦ 36◦ 47◦

max. dihedral angle 151◦ 135◦ 110◦

min. distance to surface 0.00210 0.00867 0.0163
max. distance to surface 0.160 0.240 0.320
mean distance to surface 0.0397 0.0880 0.138

volume ratio 1.45 1.96 2.67

24

Table 4.3. Measurements of volume mesh results pictured in Figure 4.4. The offset band
ratios for each column are, from left to right, 0.4, 0.6, and 0.8.

sculpture, 6204 elements, h = 0.09

doffset 0.036 0.054 0.072
min. dihedral angle 19◦ 30◦ 39◦

max. dihedral angle 147◦ 132◦ 113◦

min. distance to surface 0.00000163 0.00000740 0.000100
max. distance to surface 0.0359 0.0538 0.0720
avg. distance to surface 0.00372 0.00769 0.0135

volume ratio 1.11 1.20 1.33

sculpture, 4767 elements, h = 0.10

doffset 0.04 0.06 0.08
min. dihedral angle 13◦ 22◦ 30◦

max. dihedral angle 152◦ 139◦ 129◦

min. distance to surface 0.00000533 0.00000160 0.00000179
max. distance to surface 0.0398 0.0599 0.0799
mean distance to surface 0.00472 0.00812 0.0135

volume ratio 1.12 1.19 1.30

sculpture, 3822 elements, h = 0.11

doffset 0.044 0.066 0.088
min. dihedral angle 15◦ 21◦ 35◦

max. dihedral angle 153◦ 144◦ 125◦

min. distance to surface 0.00000429 0.00000431 0.000100
max. distance to surface 0.0440 0.0659 0.0879
mean distance to surface 0.00268 0.00621 0.0175

volume ratio 1.08 1.17 1.44

sculpture, 1824 elements, h = 0.15

doffset 0.06 0.09 0.12
min. dihedral angle 8◦ 29◦ 40◦

max. dihedral angle 169◦ 131◦ 116◦

min. distance to surface 0.000100 0.000100 0.000100
max. distance to surface 0.0599 0.0899 0.120
mean distance to surface 0.0117 0.0212 0.0328

volume ratio 1.33 1.50 1.76

25

Table 4.4. Measurements of volume mesh results pictured in Figure 4.5. The offset band
ratios for each column are, from left to right, 0.6 and 0.8.

dragon, 2834 elements, h = 1.25

doffset 0.75 1.0
min. dihedral angle 22◦ 32◦

max. dihedral angle 148◦ 130◦

min. distance to surface 0.747 0.996
max. distance to surface 0.145 0.217
avg. distance to surface 0.378 0.556

volume ratio 1.46 1.63

dragon, 1831 elements, h = 1.5

doffset 0.9 1.2
min. dihedral angle 1◦ 34◦

max. dihedral angle 180◦ 126◦

min. distance to surface 0.899 1.20
max. distance to surface 0.120 0.275
mean distance to surface 0.00360 0.597

volume ratio 1.40 1.76

dragon, 1252 elements, h = 1.75

doffset 1.05 1.4
min. dihedral angle 1◦ 30◦

max. dihedral angle 180◦ 133◦

min. distance to surface 1.05 1.4
max. distance to surface 0.174 0.291
mean distance to surface 0.00166 0.519

volume ratio 1.51 1.76

dragon, 951 elements, h = 2.0

doffset 1.2 1.6
min. dihedral angle 4◦ 31◦

max. dihedral angle 170◦ 136◦

min. distance to surface 1.2 1.6
max. distance to surface 0.201 0.359
mean distance to surface 0.0713 0.534

volume ratio 1.60 1.95

CHAPTER 5

CONCLUSION

We have presented a procedure for tetrahedral mesh generation that is uniquely well

suited to creating coarse, enclosing, high-quality volume meshes for animating arbitrary

surface meshes in interactive simulations. Our procedure combines a pair of previously

known techniques: using an initial background lattice and iteratively optimizing vertices.

To these techniques we have contributed a new understanding of how BCC lattice-based

meshes can respond to compression-like optimization, and we have demonstrated a way to

improve that response. We have also contributed a method of simultaneously optimizing

both the surface shape and the element quality of an enclosing volume mesh, obviating

the need to define a detail-blurring offset surface. As our test results demonstrate, our

procedure reliably generates volume meshes at levels of coarseness, shape approximation,

and minimum element quality that are appropriate for interactive applications. It offers

a tradeoff between these properties as well.

Our procedure is clearly an effective meshing strategy. Our implementation generated

even the highest-resolution meshes in the span of a few minutes, so it is practical to use

in real projects as well. Adoption of our procedure among simulation practitioners will

depend on how often it fails, given their particular input surfaces, to converge to their

required levels of shape approximation. Several avenues for improving its behavior in

these cases already present themselves for future investigation. Therefore our procedure

is a valuable addition to the literature of meshing for simulation, benefiting researchers

and practitioners alike.

REFERENCES

[1] Acar, U. A., and Hudson, B. Dynamic mesh refinement with quad trees and
off-centers. Tech. Rep. 121, Carnegie Mellon University School of Computer Science,
2007.

[2] Alim, U. R., Entezari, A., and Alim, T. M. The lattice-Boltzmann method
on optimal sampling lattices. IEEE Transactions on Visualization and Computer
Graphics 15, 4 (2009), 630–641.

[3] Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. Variational
tetrahedral meshing. In Proceedings of ACM SIGGRAPH 2005 (2005).

[4] Bargteil, A. W., Goktekin, T. G., O’Brien, J. F., and Strain, J. A. A semi-
Lagrangian contouring method for fluid simulation. ACM Transactions on Graphics
25, 1 (2006), 19–38.

[5] Bern, M., and Eppstein, D. Mesh generation and optimal triangulation. Tech.
Rep. 47, Xerox Palo Alto Research Center, 1992.

[6] Brochu, T., and Bridson, R. Robust topological operations for dynamic explicit
surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472–2493.

[7] Bronson, J., Levine, J., and Whitaker, R. Lattice cleaving: Conforming
tetrahedral meshes of multimaterial domains with bounded quality. In Proceedings
of the 21st International Meshing Roundtable. 2013, pp. 191–209.

[8] Buratynski, E. K. A fully automatic three-dimensional mesh generator for
complex geometries. International Journal for Numerical Methods in Engineering
30 (1990), 931–952.

[9] Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. Inter-
active skeleton-driven dynamic deformations. In Proceedings of ACM SIGGRAPH
2002 (2002).

[10] Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. A
multiresolution framework for dynamic deformations. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2002).

[11] Chen, L. Mesh smoothing schemes based on optimal Delaunay triangulations. In
Proceedings of the 13th International Meshing Roundtable (2004), pp. 109–120.

[12] Cutler, B., Dorsey, J., and McMillan, L. Simplification and improvement
of tetrahedral models for simulation. In Proceedings of Eurographics Symposium on
Geometry Processing 2004 (2004).

28

[13] Du, Q., and Wang, D. Tetrahedral mesh generation and optimization based on
centroidal Voronoi tessellations. International Journal for Numerical Methods in
Engineering 56, 9 (2003), 1355–1373.

[14] Edelsbrunner, H., Preparata, F. P., and West, D. B. Tetrahedrizing point
sets in three dimensions. Journal of Symbolic Computation 10, 3-4 (1990), 335–347.

[15] Freitag, L. A., and Knupp, P. M. Tetrahedral mesh improvement via optimiza-
tion of the element condition number. International Journal for Numerical Methods
in Engineering 53, 6 (2002), 1377–1391.

[16] Freitag, L. A., and Ollivier-gooch, C. Tetrahedral mesh improvement
using swapping and smoothing. International Journal for Numerical Methods in
Engineering 40, 21 (1997), 3979–4002.

[17] Huang, J., Chen, L., Liu, X., and Bao, H. Efficient mesh deformation using
tetrahedron control mesh. In Proceedings of the 2008 ACM Symposium on Solid and
Physical Modeling (2008), pp. 241–247.

[18] Hudson, B., Miller, G., and Phillips, T. Sparse Voronoi refinement. In
Proceedings of the 15th International Meshing Roundtable (2006), pp. 339–356.

[19] Klingner, B. M., and Shewchuk, J. R. Aggressive tetrahedral mesh improve-
ment. In Proceedings of the 16th International Meshing Roundtable (2007), pp. 3–23.

[20] Labelle, F., and Shewchuk, J. R. Isosurface stuffing: Fast tetrahedral meshes
with good dihedral angles. In Proceedings of ACM SIGGRAPH 2007 (2007).

[21] Li, X.-Y., Teng, S.-H., and Üngör, A. Biting: Advancing front meets sphere
packing. International Journal for Numerical Methods in Engineering 49, 1 (2000),
61–81.

[22] Liu, A., and Joe, B. Quality local refinement of tetrahedral meshes based on
8-subtetrahedron subdivision. SIAM Journal on Scientific Computing 16, 6 (1995),
1269–1291.

[23] Mitchell, S. A., and Vavasis, S. A. Quality mesh generation in higher dimen-
sions. SIAM Journal on Computing 29, 4 (2000), 1334–1370.

[24] Molino, N., Bao, Z., and Fedkiw, R. A virtual node algorithm for changing
mesh topology during simulation. In Proceedings of ACM SIGGRAPH 2004 (2004).

[25] Molino, N., Bridson, R., Teran, J., and Fedkiw, R. A crystalline, red green
strategy for meshing highly deformable objects with tetrahedra. In Proceedings of
the 12th International Meshing Roundtable (2003), pp. 103–114.

[26] Mullen, P., Memari, P., de Goes, F., and Desbrun, M. HOT: Hodge-
optimized triangulations. In Proceedings of ACM SIGGRAPH 2011 (2011).

[27] Müller, M., and Gross, M. Interactive virtual materials. In Proccedings of
Graphics Interface 2004 (2004), pp. 239–246.

29

[28] Müller, M., Teschner, M., and Gross, M. Physically-based simulation
of objects represented by surface meshes. In Proceedings of Computer Graphics
International 2004 (2004).

[29] Perucchio, R., Saxena, M., and Kela, A. Automatic mesh generation from
solid models based on recursive spatial decompositions. International Journal for
Numerical Methods in Engineering 28, 11 (1989), 2469–2501.

[30] Schöberl, J. NETGEN - An advancing front 2D/3D-mesh generator based on
abstract rules. Computing and Visualization in Science 1, 1 (1997), 41–52.

[31] Shen, C., O’Brien, J. F., and Shewchuk, J. R. Interpolating and approximat-
ing implicit surfaces from polygon soup. In Proceedings of ACM SIGGRAPH 2004
(2004).

[32] Shephard, M. S., and Georges, M. K. Automatic three-dimensional mesh
generation by the finite octree technique. International Journal for Numerical
Methods in Engineering 32, 4 (1991), 709–749.

[33] Shewchuk, J. R. Tetrahedral mesh generation by Delaunay refinement. In
Proceedings of the 14th Annual Symposium on Computational Geometry (1998),
pp. 86–95.

[34] Shewchuk, J. R. What is a good linear element? Interpolation, conditioning,
and quality measures. In Proceedings of the 11th International Meshing Roundtable
(2002), pp. 115–126.

[35] Si, H. TetGen, a quality tetrahedral mesh generator and three-dimensional Delaunay
triangulator, v1.3 users manual. Tech. Rep. 9, Weierstrass Institute for Applied
Analysis and Stochastics, 2004.

[36] Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. Hybrid simulation
of deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2007).

[37] Teran, J., Molino, N., Fedkiw, R., and Bridson, R. Adaptive physics based
tetrahedral mesh generation using level sets. Engineering with Computers 21, 1
(2005), 2–18.

[38] Tournois, J., Srinivasan, R., and Alliez, P. Perturbing slivers in 3D Delau-
nay meshes. In Proceedings of the 18th International Meshing Roundtable (2009),
pp. 157–173.

[39] Tournois, J., Wormser, C., Alliez, P., and Desbrun, M. Interleaving Delau-
nay refinement and optimization for practical isotropic tetrahedron mesh generation.
In Proceedings of ACM SIGGRAPH 2009 (2009).

[40] Wojtan, C., and Turk, G. Fast viscoelastic behavior with thin features. In
Proceedings of ACM SIGGRAPH 2008 (2008).

